首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Edge Bipartization Faster Than 2^k
  • 本地全文:下载
  • 作者:Marcin Pilipczuk ; Michal Pilipczuk ; Marcin Wrochna
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:63
  • 页码:26:1-26:13
  • DOI:10.4230/LIPIcs.IPEC.2016.26
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In the EDGE BIPARTIZATION problem one is given an undirected graph G and an integer k, and the question is whether k edges can be deleted from G so that it becomes bipartite. In 2006, Guo et al. [J. Comput. Syst. Sci., 72(8):1386-1396, 2006] proposed an algorithm solving this problem in time O(2^k m^2); today, this algorithm is a textbook example of an application of the iterative compression technique. Despite extensive progress in the understanding of the parameterized complexity of graph separation problems in the recent years, no significant improvement upon this result has been yet reported. We present an algorithm for Edge Bipartization that works in time O(1.977^k nm), which is the first algorithm with the running time dependence on the parameter better than 2^k. To this end, we combine the general iterative compression strategy of Guo et al. [J. Comput. Syst. Sci., 72(8):1386-1396, 2006], the technique proposed by Wahlström [SODA'14] of using a polynomial-time solvable relaxation in the form of a Valued Constraint Satisfaction Problem to guide a bounded-depth branching algorithm, and an involved Measure&Conquer analysis of the recursion tree.
  • 关键词:edge bipartization; FPT algorithm
国家哲学社会科学文献中心版权所有