首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:blockcluster: An R Package for Model-Based Co-Clustering
  • 本地全文:下载
  • 作者:Parmeet Singh Bhatia ; Serge Iovleff ; Gérard Govaert
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2017
  • 卷号:76
  • 期号:1
  • 页码:1-24
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:Simultaneous clustering of rows and columns, usually designated by bi-clustering, coclustering or block clustering, is an important technique in two way data analysis. A new standard and efficient approach has been recently proposed based on the latent block model (Govaert and Nadif 2003) which takes into account the block clustering problem on both the individual and variable sets. This article presents our R package blockcluster for co-clustering of binary, contingency and continuous data based on these very models. In this document, we will give a brief review of the model-based block clustering methods, and we will show how the R package blockcluster can be used for co-clustering.
  • 关键词:model-based clustering;block mixture model;EM and CEM algorithms;simultaneous clustering;co-clustering;R;blockcluster
国家哲学社会科学文献中心版权所有