首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:synthpop: Bespoke Creation of Synthetic Data in R
  • 本地全文:下载
  • 作者:Beata Nowok ; Gillian M. Raab ; Chris Dibben
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2016
  • 卷号:74
  • 期号:1
  • 页码:1-26
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:In many contexts, confidentiality constraints severely restrict access to unique and valuable microdata. Synthetic data which mimic the original observed data and preserve the relationships between variables but do not contain any disclosive records are one possible solution to this problem. The synthpop package for R, introduced in this paper, provides routines to generate synthetic versions of original data sets. We describe the methodology and its consequences for the data characteristics. We illustrate the package features using a survey data example.
  • 关键词:synthetic data;disclosure control;CART;R;UK longitudinal studies
国家哲学社会科学文献中心版权所有