首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Spatial Data Analysis with R-INLA with Some Extensions
  • 本地全文:下载
  • 作者:Roger Bivand ; Virgilio Gómez-Rubio ; Håvard Rue
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2015
  • 卷号:63
  • 期号:1
  • 页码:1-31
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:The integrated nested Laplace approximation (INLA) provides an interesting way of approximating the posterior marginals of a wide range of Bayesian hierarchical models. This approximation is based on conducting a Laplace approximation of certain functions and numerical integration is extensively used to integrate some of the models parameters out. The R-INLA package offers an interface to INLA, providing a suitable framework for data analysis. Although the INLA methodology can deal with a large number of models, only the most relevant have been implemented within R-INLA. However, many other important models are not available for R-INLA yet. In this paper we show how to fit a number of spatial models with R-INLA, including its interaction with other R packages for data analysis. Secondly, we describe a novel method to extend the number of latent models available for the model parameters. Our approach is based on conditioning on one or several model parameters and fit these conditioned models with R-INLA. Then these models are combined using Bayesian model averaging to provide the final approximations to the posterior marginals of the model. Finally, we show some examples of the application of this technique in spatial statistics. It is worth noting that our approach can be extended to a number of other fields, and not only spatial statistics.
国家哲学社会科学文献中心版权所有