首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Multi-Objective Parameter Selection for Classifiers
  • 本地全文:下载
  • 作者:Christoph Müssel ; Ludwig Lausser ; Markus Maucher
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2012
  • 卷号:46
  • 期号:1
  • 页码:1-27
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:Setting the free parameters of classifiers to different values can have a profound impact on their performance. For some methods, specialized tuning algorithms have been developed. These approaches mostly tune parameters according to a single criterion, such as the cross-validation error. However, it is sometimes desirable to obtain parameter values that optimize several concurrent - often conflicting - criteria. The TunePareto package provides a general and highly customizable framework to select optimal parameters for classifiers according to multiple objectives. Several strategies for sampling and optimizing parameters are supplied. The algorithm determines a set of Pareto-optimal parameter configurations and leaves the ultimate decision on the weighting of objectives to the researcher. Decision support is provided by novel visualization techniques.
国家哲学社会科学文献中心版权所有