首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:The Estimation of Item Response Models with the lmer Function from the lme4 Package in R
  • 本地全文:下载
  • 作者:Paul De Boeck ; Marjan Bakker ; Robert Zwitser
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2011
  • 卷号:39
  • 期号:1
  • 页码:1-28
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:In this paper we elaborate on the potential of the lmer function from the lme4 package in R for item response (IRT) modeling. In line with the package, an IRT framework is described based on generalized linear mixed modeling. The aspects of the framework refer to (a) the kind of covariates -- their mode (person, item, person-by-item), and their being external vs. internal to responses, and (b) the kind of effects the covariates have -- fixed vs. random, and if random, the mode across which the effects are random (persons, items). Based on this framework, three broad categories of models are described: Item covariate models, person covariate models, and person-by-item covariate models, and within each category three types of more specific models are discussed. The models in question are explained and the associated lmer code is given. Examples of models are the linear logistic test model with an error term, differential item functioning models, and local item dependency models. Because the lme4 package is for univariate generalized linear mixed models, neither the two-parameter, and three-parameter models, nor the item response models for polytomous response data, can be estimated with the lmer function.
国家哲学社会科学文献中心版权所有