首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects
  • 本地全文:下载
  • 作者:Martina Morris ; Mark S. Handcock ; David R. Hunter
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2008
  • 卷号:24
  • 期号:1
  • 页码:1-24
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:Exponential-family random graph models (ERGMs) represent the processes that govern the formation of links in networks through the terms selected by the user. The terms specify network statistics that are sufficient to represent the probability distribution over the space of networks of that size. Many classes of statistics can be used. In this article we describe the classes of statistics that are currently available in the ergm package. We also describe means for controlling the Markov chain Monte Carlo (MCMC) algorithm that the package uses for estimation. These controls affect either the proposal distribution on the sample space used by the underlying Metropolis-Hastings algorithm or the constraints on the sample space itself. Finally, we describe various other arguments to core functions of the ergm package.
国家哲学社会科学文献中心版权所有