首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Predictive Modelling for Motor Insurance Claims Using Artificial Neural Networks
  • 本地全文:下载
  • 作者:Zuriahati Mohd Yunos ; Aida Ali ; Siti Mariyam Shamsuddin
  • 期刊名称:International Journal of Advances in Soft Computing and Its Applications
  • 印刷版ISSN:2074-8523
  • 出版年度:2016
  • 卷号:8
  • 期号:3
  • 出版社:International Center for Scientific Research and Studies
  • 摘要:The expected claim frequency and the expected claim severity areused in predictive modelling for motor insurance claims. There are twocategory of claims were considered, namely, third party propertydamage (TPPD) and own damage (OD). Data sets from the year 2001to 2003 are used to develop the predictive model. The main issues inmodelling the motor insurance claims are related to the nature ofinsurance data, such as huge information, uncertainty, imprecise andincomplete information; and classical statistical techniques whichcannot handle the extreme value in the insurance data. This paperproposes the back propagation neural network (BPNN) model as a toolto model the problem. A detailed explanation of how the BPNN modelsolves the issues is provided
  • 关键词:predictive modelling; claim frequency; claim severity; back;propagation neural network
国家哲学社会科学文献中心版权所有