首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Evolving Self-Adaptive Genetic Algorithm in Nonlinear Support Vector Machines for Classification Problems
  • 本地全文:下载
  • 作者:Mohammad Mezher ; Maysam Abbod
  • 期刊名称:Annals. Computer Science Series
  • 印刷版ISSN:1583-7165
  • 电子版ISSN:2065-7471
  • 出版年度:2010
  • 卷号:8
  • 期号:2
  • 页码:99-112
  • 出版社:Mirton Publishing House, Timisoara
  • 摘要:Support Vector Machines (SVM) has shown a range of promising applications on classification problems. In this paper, we propose the genetic algorithm that employs Self-Adaptive Mutation Rate (SAMR) to develop kernel functions for SVM classifiers. The proposed SAMR model implemented the hybrid model for three advanced non-linear classification algorithms and shows competitive results in comparing to Grid SVM. Five publicly available datasets, cross validation correctness for Area Under Curve (AUC) have been involved. Improvements achieved may lead to biomarkers results
国家哲学社会科学文献中心版权所有