首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:FEATURE SELECTION, LEARNING METRICS AND DIMENSION REDUCTION IN TRAINING AND CLASSIFICATION PROCESSES IN INTRUSION DETECTION SYSTEMS
  • 本地全文:下载
  • 作者:FABIO MENDOZA PALECHOR ; ALEXIS DE LA HOZ MANOTAS ; EMIRO DE LA HOZ FRANCO
  • 期刊名称:Journal of Theoretical and Applied Information Technology
  • 印刷版ISSN:1992-8645
  • 电子版ISSN:1817-3195
  • 出版年度:2015
  • 卷号:82
  • 期号:2
  • 出版社:Journal of Theoretical and Applied
  • 摘要:This research presents an IDS prototype in Matlab that assess network traffic connections contained in the NSL-KDD dataset, comparing feature selection techniques available in FEAST toolbox, refining prior results applying dimension reduction technique ISOMAP. The classification process used a supervised learning technique called Support Vector Machines (SVM). The comparative analysis related to detection rates by attack category are conclusive that MRMR+PCA+SVM (selection, reduction and classification techniques) combined obtained more promising results, just using 5 of 41 available features in the dataset. The results obtained were: 85.42% normal traffic, 80.77% DoS, 90.41% Probe, 91.78% U2R and 83.25% R2L.
  • 关键词:System Intrusion Detection (IDS); Feature Selection Toolbox (FEAST); Isometric Feature Mapping ISOMAP; Support Vector Machine (SVM); Principal Component Analysis (PCA).
国家哲学社会科学文献中心版权所有