首页    期刊浏览 2025年01月07日 星期二
登录注册

文章基本信息

  • 标题:FUZZY KERNEL K-MEDOIDS ALGORITHM FOR MULTICLASS MULTIDIMENSIONAL DATA CLASSIFICATION
  • 本地全文:下载
  • 作者:ZUHERMAN RUSTAM ; AINI SURI TALITA
  • 期刊名称:Journal of Theoretical and Applied Information Technology
  • 印刷版ISSN:1992-8645
  • 电子版ISSN:1817-3195
  • 出版年度:2015
  • 卷号:80
  • 期号:1
  • 出版社:Journal of Theoretical and Applied
  • 摘要:The success of the classification method is highly dependent on how to specify initial data as the initial prototype, dissimilarity functions that we used and the presence of outliers among the data. To overcome these obstacles, in this paper we present Fuzzy Kernel k-Medoids (FKkM) algorithm that we claim to be robust against outliers, invariant under translation and data transformation, as the combined development of Fuzzy LVQ, Fuzzy k-Medoids and Kernel Function. Based on the experiments, it provides a better accuracy than Support Vector Machines, Kernel Fisher Discriminant and RBF Neural Network for multiclass multidimensional data classification.
  • 关键词:Classification; Fuzzy LVQ; Fuzzy K-Medoids; Kernel Function; Multiclass Multidimensional Data
国家哲学社会科学文献中心版权所有