首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:An Application of the Dynamic Pattern Analysis Framework to the Analysis of Spatial-Temporal Crime Relationships
  • 作者:Kelvin Leong ; Junco Li ; Stephen Chan
  • 期刊名称:Journal of Universal Computer Science
  • 印刷版ISSN:0948-6968
  • 出版年度:2009
  • 卷号:15
  • 期号:9
  • 页码:1852-1870
  • 出版社:Graz University of Technology and Know-Center
  • 摘要:Dynamic pattern analysis refers to analyzing the relationship of spatial patterns at different time points. Traditional spatial pattern analysis such as data clustering can find the spatial patterns extant at a geographical location at a particular time point but failing to identify spatial dynamics, or changes that occur over time in a particular place. In this paper, we present a dynamic pattern analysis framework, the DPA framework. This framework allows user to identify three types of dynamic patterns in spatial-temporal data: 1) similar spatial patterns at different time points, 2) interactive relationship between two geographical locations as a result of a specific reason and 3) frequent association rules related to particular types of events, geographical locations, and time points. To evaluate the proposed framework, we used it to analyze a set of reported crime data for a district of Hong Kong and compared the identified patterns with some expectations of field experts and prior empirical studies for this kind of data and patterns. In line with expert predictions, we found strong correlations between school holidays and crime clusters. On the contrary, in our data set, we could not find obvious seasonal dependency. These findings are corroborated by related empirical crime studies.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有