A lattice-theoretic denotational semantics of channel and process behaviour is developed. Thequery space is modelled as a continuous lattice in which the top element denotes the query demanding all the information, whereas other elements denote queries demanding partial and/or local information. Answers are interpreted as elements of lattices constructed over suitable domains of approximations to the exact objects. An unanswered query is treated as an error anddenoted using the top element.
The major novel characteristic of our semantic model is that it reflects the dependency of answerson queries. This enables the definition and analysis of an appropriate concept of convergence rate, by assigning an effort indicator to each query and a measure of information content to eachanswer. Thus we capture not only what function a process computes, but also how a process transforms the convergence rates from its inputs to its outputs. In future work these indicatorscan be used to capture further computational complexity measures.A robust prototype implementation of our model is available.