首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Privacy-Preserving Data Mining for Horizontally-Distributed Datasets using ”ŽEGADP
  • 本地全文:下载
  • 作者:Mohammad Saad Al-Ahmadi
  • 期刊名称:Communications of the IBIMA
  • 电子版ISSN:1943-7765
  • 出版年度:2008
  • 卷号:2008
  • 出版社:IBIMA Publishing
  • 摘要:In this paper, we investigate the possibility of using EGADP for protecting data in horizontally-distributed datasets. EGADP is a new advanced data perturbation method that masks confidential numeric attributes in original datasets while reproducing all linear relationships in masked datasets. It is developed for centralized datasets that are owned by one owner, and no study, to the best of our knowledge, suggests and investigates empirically the possibilities of using it to protect distributed confidential datasets. This study is intended to fill this gap.
国家哲学社会科学文献中心版权所有