摘要:Controlled natural languages (CNLs) are effective languages for knowledge representation and reasoning. They are designed based on certain natural languages with restricted lexicon and grammar. CNLs are unambiguous and simple as opposed to their base languages. They preserve the expressiveness and coherence of natural languages. In this paper, it mainly focuses on a class of CNLs, called machine-oriented CNLs, which have well-defined semantics that can be deterministically translated into formal languages to do logical reasoning. Although a number of machine-oriented CNLs emerged and have been used in many application domains for problem solving and question answering, there are still many limitations: First, CNLs cannot handle inconsistencies in the knowledge base. Second, CNLs are not powerful enough to identify different variations of a sentence and therefore might not return the expected inference results. Third, CNLs do not have a good mechanism for defeasible reasoning. This paper addresses these three problems and proposes a research plan for solving these problems. It also shows the current state of research: a paraconsistent logical framework from which six principles that guide the user to encode CNL sentences were created. Experiment results show this paraconsistent logical framework and these six principles can consistently and effectively solve word puzzles with injections of inconsistencies.