首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Greed is Good for Deterministic Scale-Free Networks
  • 本地全文:下载
  • 作者:Ankit Chauhan ; Tobias Friedrich ; Ralf Rothenberger
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:65
  • 页码:33:1-33:15
  • DOI:10.4230/LIPIcs.FSTTCS.2016.33
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Large real-world networks typically follow a power-law degree distribution. To study such networks, numerous random graph models have been proposed. However, real-world networks are not drawn at random. In fact, the behavior of real-world networks and random graph models can be the complete opposite of one another, depending on the considered property. Brach, Cygan, Lacki, and Sankowski [SODA 2016] introduced two natural deterministic conditions: (1) a power-law upper bound on the degree distribution (PLB-U) and (2) power-law neighborhoods, that is, the degree distribution of neighbors of each vertex is also upper bounded by a power law (PLB-N). They showed that many real-world networks satisfy both deterministic properties and exploit them to design faster algorithms for a number of classical graph problems like transitive closure, maximum matching, determinant, PageRank, matrix inverse, counting triangles and maximum clique. We complement the work of Brach et al. by showing that some well-studied random graph models exhibit both the mentioned PLB properties and additionally also a power-law lower bound on the degree distribution (PLB-L). All three properties hold with high probability for Chung-Lu Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely for Hyperbolic Random Graphs. As a consequence, all results of Brach et al. also hold with high probability for Chung-Lu Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely for Hyperbolic Random Graphs. In the second part of this work we study three classical NP-hard combinatorial optimization problems on PLB networks. It is known that on general graphs, a greedy algorithm, which chooses nodes in the order of their degree, only achieves an approximation factor of asymptotically at least logarithmic in the maximum degree for Minimum Vertex Cover and Minimum Dominating Set, and an approximation factor of asymptotically at least the maximum degree for Maximum Independent Set. We prove that the PLB-U property suffices such that the greedy approach achieves a constant-factor approximation for all three problems. We also show that all three combinatorial optimization problems are APX-complete, even if all PLB-properties hold. Hence, a PTAS cannot be expected, unless P=NP.
  • 关键词:random graphs; power-law degree distribution; scale-free networks; PLB networks; approximation algorithms; vertex cover; dominating set; independent s
国家哲学社会科学文献中心版权所有