首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Distributed and Robust Support Vector Machine
  • 本地全文:下载
  • 作者:Yangwei Liu ; Hu Ding ; Ziyun Huang
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:64
  • 页码:54:1-54:13
  • DOI:10.4230/LIPIcs.ISAAC.2016.54
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we consider the distributed version of Support Vector Machine (SVM) under the coordinator model, where all input data (i.e., points in R^d space) of SVM are arbitrarily distributed among k nodes in some network with a coordinator which can communicate with all nodes. We investigate two variants of this problem, with and without outliers. For distributed SVM without outliers, we prove a lower bound on the communication complexity and give a distributed (1-epsilon)-approximation algorithm to reach this lower bound, where epsilon is a user specified small constant. For distributed SVM with outliers, we present a (1-epsilon)-approximation algorithm to explicitly remove the influence of outliers. Our algorithm is based on a deterministic distributed top t selection algorithm with communication complexity of O(k log (t)) in the coordinator model. Experimental results on benchmark datasets confirm the theoretical guarantees of our algorithms.
  • 关键词:Distributed Algorithm; Communication Complexity; Robust Algorithm; SVM
国家哲学社会科学文献中心版权所有