首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:On (1, epsilon)-Restricted Max-Min Fair Allocation Problem
  • 本地全文:下载
  • 作者:T-H. Hubert Chan ; Zhihao Gavin Tang ; Xiaowei Wu
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:64
  • 页码:23:1-23:13
  • DOI:10.4230/LIPIcs.ISAAC.2016.23
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the max-min fair allocation problem in which a set of m indivisible items are to be distributed among n agents such that the minimum utility among all agents is maximized. In the restricted setting, the utility of each item j on agent i is either 0 or some non-negative weight w_j. For this setting, Asadpour et al. [TALG, 2012] showed that a certain configuration-LP can be used to estimate the optimal value within a factor of 4 + delta, for any delta > 0, which was recently extended by Annamalai et al. [SODA 2015] to give a polynomial-time 13-approximation algorithm for the problem. For hardness results, Bezáková and Dani [SIGecom Exch., 2005] showed that it is NP-hard to approximate the problem within any ratio smaller than 2. In this paper we consider the (1, epsilon)-restricted max-min fair allocation problem, in which for some parameter epsilon in (0, 1), each item j is either heavy (w_j = 1) or light (w_j = epsilon). We show that the (1, epsilon)-restricted case is also NP-hard to approximate within any ratio smaller than 2. Hence, this simple special case is still algorithmically interesting. Using the configuration-LP, we are able to estimate the optimal value of the problem within a factor of 3 + delta, for any delta > 0. Extending this idea, we also obtain a quasi-polynomial time (3 + 4 epsilon)-approximation algorithm and a polynomial time 9-approximation algorithm. Moreover, we show that as epsilon tends to 0, the approximation ratio of our polynomial-time algorithm approaches 3 + 2 sqrt{2} approx 5.83.
  • 关键词:Max-Min Fair Allocation; Hypergraph Matching
国家哲学社会科学文献中心版权所有