首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Fast Synchronization of Random Automata
  • 本地全文:下载
  • 作者:Cyril Nicaud
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:60
  • 页码:43:1-43:12
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2016.43
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A synchronizing word for an automaton is a word that brings that automaton into one and the same state, regardless of the starting position. Cerny conjectured in 1964 that if a $n$-state deterministic automaton has a synchronizing word, then it has a synchronizing word of length at most (n-1)^2. Berlinkov recently made a breakthrough in the probabilistic analysis of synchronization: he proved that, for the uniform distribution on deterministic automata with n states, an automaton admits a synchronizing word with high probability. In this article, we are interested in the typical length of the smallest synchronizing word, when such a word exists: we prove that a random automaton admits a synchronizing word of length O(n log^{3}n) with high probability. As a consequence, this proves that most automata satisfy the Cerny conjecture.
  • 关键词:random automata; synchronization; the Čern{\'y
国家哲学社会科学文献中心版权所有