首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Incremental Exact Min-Cut in Poly-logarithmic Amortized Update Time
  • 本地全文:下载
  • 作者:Gramoz Goranci ; Monika Henzinger ; Mikkel Thorup
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:57
  • 页码:46:1-46:17
  • DOI:10.4230/LIPIcs.ESA.2016.46
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present a deterministic incremental algorithm for exactly maintaining the size of a minimum cut with ~O(1) amortized time per edge insertion and O(1) query time. This result partially answers an open question posed by Thorup [Combinatorica 2007]. It also stays in sharp contrast to a polynomial conditional lower-bound for the fully-dynamic weighted minimum cut problem. Our algorithm is obtained by combining a recent sparsification technique of Kawarabayashi and Thorup [STOC 2015] and an exact incremental algorithm of Henzinger [J. of Algorithm 1997]. We also study space-efficient incremental algorithms for the minimum cut problem. Concretely, we show that there exists an O(n log n/epsilon^2) space Monte-Carlo algorithm that can process a stream of edge insertions starting from an empty graph, and with high probability, the algorithm maintains a (1+epsilon)-approximation to the minimum cut. The algorithm has ~O(1) amortized update-time and constant query-time.
  • 关键词:Dynamic Graph Algorithms; Minimum Cut; Edge Connectivity
国家哲学社会科学文献中心版权所有