摘要:Transductions are binary relations of finite words. For rational transductions, i.e., transductions defined by finite transducers, the inclusion, equivalence and sequential uniformisation problems are known to be undecidable. In this paper, we investigate stronger variants of inclusion, equivalence and sequential uniformisation, based on a general notion of transducer resynchronisation, and show their decidability. We also investigate the classes of finite-valued rational transductions and deterministic rational transductions, which are known to have a decidable equivalence problem. We show that sequential uniformisation is also decidable for them.