首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Approximation Algorithms for Aversion k-Clustering via Local k-Median
  • 本地全文:下载
  • 作者:Anupam Gupta ; Guru Guruganesh ; Melanie Schmidt
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:55
  • 页码:66:1-66:13
  • DOI:10.4230/LIPIcs.ICALP.2016.66
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In the aversion k-clustering problem, given a metric space, we want to cluster the points into k clusters. The cost incurred by each point is the distance to the furthest point in its cluster, and the cost of the clustering is the sum of all these per-point-costs. This problem is motivated by questions in generating automatic abstractions of extensive-form games. We reduce this problem to a "local" k-median problem where each facility has a prescribed radius and can only connect to clients within that radius. Our main results is a constant-factor approximation algorithm for the aversion k-clustering problem via the local k-median problem. We use a primal-dual approach; our technical contribution is a non-local rounding step which we feel is of broader interest.
  • 关键词:Approximation algorithms; clustering; k-median; primal-dual
国家哲学社会科学文献中心版权所有