首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:AC^0 o MOD_2 Lower Bounds for the Boolean Inner Product
  • 本地全文:下载
  • 作者:Mahdi Cheraghchi ; Elena Grigorescu ; Brendan Juba
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:55
  • 页码:35:1-35:14
  • DOI:10.4230/LIPIcs.ICALP.2016.35
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:AC^0 o MOD_2 circuits are AC^0 circuits augmented with a layer of parity gates just above the input layer. We study AC^0 o MOD2 circuit lower bounds for computing the Boolean Inner Product functions. Recent works by Servedio and Viola (ECCC TR12-144) and Akavia et al. (ITCS 2014) have highlighted this problem as a frontier problem in circuit complexity that arose both as a first step towards solving natural special cases of the matrix rigidity problem and as a candidate for constructing pseudorandom generators of minimal complexity. We give the first superlinear lower bound for the Boolean Inner Product function against AC^0 o MOD2 of depth four or greater. Specifically, we prove a superlinear lower bound for circuits of arbitrary constant depth, and an ~Omega(n^2) lower bound for the special case of depth-4 AC^0 o MOD_2. Our proof of the depth-4 lower bound employs a new "moment-matching" inequality for bounded, nonnegative integer-valued random variables that may be of independent interest: we prove an optimal bound on the maximum difference between two discrete distributions' values at 0, given that their first d moments match.
  • 关键词:Boolean analysis; circuit complexity; lower bounds
国家哲学社会科学文献中心版权所有