首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:On the Number of Maximum Empty Boxes Amidst n Points
  • 本地全文:下载
  • 作者:Adrian Dumitrescu ; Minghui Jiang
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:51
  • 页码:36:1-36:13
  • DOI:10.4230/LIPIcs.SoCG.2016.36
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We revisit the following problem (along with its higher dimensional variant): Given a set S of n points inside an axis-parallel rectangle U in the plane, find a maximum-area axis-parallel sub-rectangle that is contained in U but contains no points of S. 1. We prove that the number of maximum-area empty rectangles amidst n points in the plane is O(n log n 2^alpha(n)), where alpha(n) is the extremely slowly growing inverse of Ackermann's function. The previous best bound, O(n^2), is due to Naamad, Lee, and Hsu (1984). 2. For any d at least 3, we prove that the number of maximum-volume empty boxes amidst n points in R^d is always O(n^d) and sometimes Omega(n^floor(d/2)). This is the first superlinear lower bound derived for this problem. 3. We discuss some algorithmic aspects regarding the search for a maximum empty box in R^3. In particular, we present an algorithm that finds a (1-epsilon)-approximation of the maximum empty box amidst n points in O(epsilon^{-2} n^{5/3} log^2{n}) time.
  • 关键词:Maximum empty box; Davenport-Schinzel sequence; approximation algorithm; data mining.
国家哲学社会科学文献中心版权所有