首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:A Composition Theorem for Conical Juntas
  • 本地全文:下载
  • 作者:Mika G{\"o}{\"o}s ; T. S. Jayram
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:50
  • 页码:5:1-5:16
  • DOI:10.4230/LIPIcs.CCC.2016.5
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We describe a general method of proving degree lower bounds for conical juntas (nonnegative combinations of conjunctions) that compute recursively defined boolean functions. Such lower bounds are known to carry over to communication complexity. We give two applications: - AND-OR trees. We show a near-optimal ~Omega(n^{0.753...}) randomised communication lower bound for the recursive NAND function (a.k.a. AND-OR tree). This answers an open question posed by Beame and Lawry. - Majority trees. We show an Omega(2.59^k) randomised communication lower bound for the 3-majority tree of height k. This improves over the state-of-the-art already in the context of randomised decision tree complexity.
  • 关键词:Composition theorems; conical juntas
国家哲学社会科学文献中心版权所有