首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Size-Treewidth Tradeoffs for Circuits Computing the Element Distinctness Function
  • 本地全文:下载
  • 作者:Mateus de Oliveira Oliveira
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:47
  • 页码:56:1-56:14
  • DOI:10.4230/LIPIcs.STACS.2016.56
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this work we study the relationship between size and treewidth of circuits computing variants of the element distinctness function. First, we show that for each n, any circuit of treewidth t computing the element distinctness function delta_n:{0,1}^n -> {0,1} must have size at least Omega((n^2)/(2^{O(t)}*log(n))). This result provides a non-trivial generalization of a super-linear lower bound for the size of Boolean formulas (treewidth 1) due to Neciporuk. Subsequently, we turn our attention to read-once circuits, which are circuits where each variable labels at most one input vertex. For each n, we show that any read-once circuit of treewidth t and size s computing a variant tau_n:{0,1}^n -> {0,1} of the element distinctness function must satisfy the inequality t * log(s) >= Omega(n/log(n)). Using this inequality in conjunction with known results in structural graph theory, we show that for each fixed graph H, read-once circuits computing tau_n which exclude H as a minor must have size at least Omega(n^2/log^{4}(n)). For certain well studied functions, such as the triangle-freeness function, this last lower bound can be improved to Omega(n^2/log^2(n)).
  • 关键词:non-linear lower bounds; treewidth; element distinctness
国家哲学社会科学文献中心版权所有