首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Fast Biclustering by Dual Parameterization
  • 本地全文:下载
  • 作者:Pål Gr\onås Drange ; Felix Reidl ; Fernando S{\'a}nchez Villaamil
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:43
  • 页码:402-413
  • DOI:10.4230/LIPIcs.IPEC.2015.402
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study two clustering problems, Starforest Editing, the problem of adding and deleting edges to obtain a disjoint union of stars, and the generalization Bicluster Editing. We show that, in addition to being NP-hard, none of the problems can be solved in subexponential time unless the exponential time hypothesis fails. Misra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number of connected components in the solution should not make the problem easier: In particular, they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-Cluster Editing) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather than the rule. Here, p is a secondary parameter, bounding the number of components in the solution. However, upon bounding the number of stars or bicliques in the solution, we obtain algorithms which run in time O(2^{3*sqrt(pk)} + n + m) for p-Starforest Editing and O(2^{O(p * sqrt(k) * log(pk))} + n + m) for p-Bicluster Editing. We obtain a similar result for the more general case of t-Partite p-Cluster Editing. This is subexponential in k for a fixed number of clusters, since p is then considered a constant. Our results even out the number of multivariate subexponential time algorithms and give reasons to believe that this area warrants further study.
  • 关键词:graph editing; subexponential algorithms; parameterized complexity
国家哲学社会科学文献中心版权所有