首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:On Kernelization and Approximation for the Vector Connectivity Problem
  • 本地全文:下载
  • 作者:Stefan Kratsch ; Manuel Sorge
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:43
  • 页码:377-388
  • DOI:10.4230/LIPIcs.IPEC.2015.377
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In the Vector Connectivity problem we are given an undirected graph G=(V,E), a demand function phi: V => {0,...,d}, and an integer k. The question is whether there exists a set S of at most k vertices such that every vertex v in V\S has at least phi(v) vertex-disjoint paths to S; this abstractly captures questions about placing servers in a network, or warehouses on a map, relative to demands. The problem is NP-hard already for instances with d=4 (Cicalese et al., Theor. Comput. Sci. 2015), admits a log-factor approximation (Boros et al., Networks 2014), and is fixed-parameter tractable in terms of k (Lokshtanov, unpublished 2014). We prove several results regarding kernelization and approximation for Vector Connectivity and the variant Vector d-Connectivity where the upper bound d on demands is a constant. For Vector d-Connectivity we give a factor d-approximation algorithm and construct a vertex-linear kernelization, i.e., an efficient reduction to an equivalent instance with f(d)k=O(k) vertices. For Vector Connectivity we get a factor opt-approximation and we show that it has no kernelization to size polynomial in k+d unless NP \subseteq coNP/poly, making f(d)\poly(k) optimal for Vector d-Connectivity. Finally, we provide a write-up for fixed-parameter tractability of Vector Connectivity(k) by giving a different algorithm based on matroid intersection.
  • 关键词:parameterized complexity; kernelization; approximation
国家哲学社会科学文献中心版权所有