首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Improved Exact Algorithms for Mildly Sparse Instances of Max SAT
  • 本地全文:下载
  • 作者:Takayuki Sakai ; Kazuhisa Seto ; Suguru Tamaki
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:43
  • 页码:90-101
  • DOI:10.4230/LIPIcs.IPEC.2015.90
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present improved exponential time exact algorithms for Max SAT. Our algorithms run in time of the form O(2^{(1-mu(c))n}) for instances with n variables and m=cn clauses. In this setting, there are three incomparable currently best algorithms: a deterministic exponential space algorithm with mu(c)=1/O(c * log(c)) due to Dantsin and Wolpert [SAT 2006], a randomized polynomial space algorithm with mu(c)=1/O(c * log^3(c)) and a deterministic polynomial space algorithm with mu(c)=1/O(c^2 * log^2(c)) due to Sakai, Seto and Tamaki [Theory Comput. Syst., 2015]. Our first result is a deterministic polynomial space algorithm with mu(c)=1/O(c * log(c)) that achieves the previous best time complexity without exponential space or randomization. Furthermore, this algorithm can handle instances with exponentially large weights and hard constraints. The previous algorithms and our deterministic polynomial space algorithm run super-polynomially faster than 2^n only if m=O(n^2). Our second results are deterministic exponential space algorithms for Max SAT with mu(c)=1/O((c * log(c))^{2/3}) and for Max 3-SAT with mu(c)=1/O(c^{1/2}) that run super-polynomially faster than 2^n when m=o(n^{5/2}/log^{5/2}(n)) and m=o(n^3/log^2(n)) respectively.
  • 关键词:maximum satisfiability; weighted; polynomial space; exponential space
国家哲学社会科学文献中心版权所有