首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Learning Circuits with few Negations
  • 本地全文:下载
  • 作者:Eric Blais ; Cl{\'e}ment L. Canonne ; Igor C. Oliveira
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:40
  • 页码:512-527
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2015.512
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Monotone Boolean functions, and the monotone Boolean circuits that compute them, have been intensively studied in complexity theory. In this paper we study the structure of Boolean functions in terms of the minimum number of negations in any circuit computing them, a complexity measure that interpolates between monotone functions and the class of all functions. We study this generalization of monotonicity from the vantage point of learning theory, establishing nearly matching upper and lower bounds on the uniform-distribution learnability of circuits in terms of the number of negations they contain. Our upper bounds are based on a new structural characterization of negation-limited circuits that extends a classical result of A.A. Markov. Our lower bounds, which employ Fourier-analytic tools from hardness amplification, give new results even for circuits with no negations (i.e. monotone functions).
  • 关键词:Boolean functions; monotonicity; negations; PAC learning
国家哲学社会科学文献中心版权所有