首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:On Approximating Node-Disjoint Paths in Grids
  • 本地全文:下载
  • 作者:Julia Chuzhoy ; David H. K. Kim
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:40
  • 页码:187-211
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2015.187
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In the Node-Disjoint Paths (NDP) problem, the input is an undirected n-vertex graph G, and a collection {(s_1,t_1),...,(s_k,t_k)} of pairs of vertices called demand pairs. The goal is to route the largest possible number of the demand pairs (s_i,t_i), by selecting a path connecting each such pair, so that the resulting paths are node-disjoint. NDP is one of the most basic and extensively studied routing problems. Unfortunately, its approximability is far from being well-understood: the best current upper bound of O(sqrt(n)) is achieved via a simple greedy algorithm, while the best current lower bound on its approximability is Omega(log^{1/2-\delta}(n)) for any constant delta. Even for seemingly simpler special cases, such as planar graphs, and even grid graphs, no better approximation algorithms are currently known. A major reason for this impasse is that the standard technique for designing approximation algorithms for routing problems is LP-rounding of the standard multicommodity flow relaxation of the problem, whose integrality gap for NDP is Omega(sqrt(n)) even on grid graphs. Our main result is an O(n^{1/4} * log(n))-approximation algorithm for NDP on grids. We distinguish between demand pairs with both vertices close to the grid boundary, and pairs where at least one of the two vertices is far from the grid boundary. Our algorithm shows that when all demand pairs are of the latter type, the integrality gap of the multicommodity flow LP-relaxation is at most O(n^{1/4} * log(n)), and we deal with demand pairs of the former type by other methods. We complement our upper bounds by proving that NDP is APX-hard on grid graphs.
  • 关键词:Node-disjoint paths; approximation algorithms; routing and layout
国家哲学社会科学文献中心版权所有