首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Beating the Random Assignment on Constraint Satisfaction Problems of Bounded Degree
  • 本地全文:下载
  • 作者:Boaz Barak ; Ankur Moitra ; Ryan O'Donnell
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:40
  • 页码:110-123
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2015.110
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that for any odd k and any instance I of the max-kXOR constraint satisfaction problem, there is an efficient algorithm that finds an assignment satisfying at least a 1/2 + Omega(1/sqrt(D)) fraction of I's constraints, where D is a bound on the number of constraints that each variable occurs in. This improves both qualitatively and quantitatively on the recent work of Farhi, Goldstone, and Gutmann (2014), which gave a quantum algorithm to find an assignment satisfying a 1/2 Omega(D^{-3/4}) fraction of the equations. For arbitrary constraint satisfaction problems, we give a similar result for "triangle-free" instances; i.e., an efficient algorithm that finds an assignment satisfying at least a mu + Omega(1/sqrt(degree)) fraction of constraints, where mu is the fraction that would be satisfied by a uniformly random assignment.
  • 关键词:constraint satisfaction problems; bounded degree; advantage over random
国家哲学社会科学文献中心版权所有