摘要:What is the effectiveness of local search algorithms for geometric problems in the plane? We prove that local search with neighborhoods of magnitude 1/epsilon^c is an approximation scheme for the following problems in the Euclidean plane: TSP with random inputs, Steiner tree with random inputs, uniform facility location (with worst case inputs), and bicriteria k-median (also with worst case inputs). The randomness assumption is necessary for TSP.
关键词:Local Search; PTAS; Facility Location; k-Median; TSP; Steiner Tree