首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:The List-Decoding Size of Fourier-Sparse Boolean Functions
  • 本地全文:下载
  • 作者:Ishay Haviv ; Oded Regev
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:33
  • 页码:58-71
  • DOI:10.4230/LIPIcs.CCC.2015.58
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A function defined on the Boolean hypercube is k-Fourier-sparse if it has at most k nonzero Fourier coefficients. For a function f: F_2^n -> R and parameters k and d, we prove a strong upper bound on the number of k-Fourier-sparse Boolean functions that disagree with f on at most d inputs. Our bound implies that the number of uniform and independent random samples needed for learning the class of k-Fourier-sparse Boolean functions on n variables exactly is at most O(n * k * log(k)). As an application, we prove an upper bound on the query complexity of testing Booleanity of Fourier-sparse functions. Our bound is tight up to a logarithmic factor and quadratically improves on a result due to Gur and Tamuz [Chicago J. Theor. Comput. Sci.,2013].
  • 关键词:Fourier-sparse functions; list-decoding; learning theory; property testing
国家哲学社会科学文献中心版权所有