首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Solving Totally Unimodular LPs with the Shadow Vertex Algorithm
  • 本地全文:下载
  • 作者:Tobias Brunsch ; Anna Gro{\ss}wendt ; Heiko R{\"o}glin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:30
  • 页码:171-183
  • DOI:10.4230/LIPIcs.STACS.2015.171
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that the shadow vertex simplex algorithm can be used to solve linear programs in strongly polynomial time with respect to the number n of variables, the number m of constraints, and 1/\delta, where \delta is a parameter that measures the flatness of the vertices of the polyhedron. This extends our recent result that the shadow vertex algorithm finds paths of polynomial length (w.r.t. n, m, and 1/delta) between two given vertices of a polyhedron [4]. Our result also complements a recent result due to Eisenbrand and Vempala [6] who have shown that a certain version of the random edge pivot rule solves linear programs with a running time that is strongly polynomial in the number of variables n and 1/\delta, but independent of the number m of constraints. Even though the running time of our algorithm depends on m, it is significantly faster for the important special case of totally unimodular linear programs, for which 1/delta\le n and which have only O(n^2) constraints.
  • 关键词:linear optimization; simplex algorithm; shadow vertex method
国家哲学社会科学文献中心版权所有