首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Bounds on Entanglement Assisted Source-channel Coding Via the Lovász Theta Number and Its Variants
  • 本地全文:下载
  • 作者:Toby Cubitt ; Laura Mancinska ; David Roberson
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2014
  • 卷号:27
  • 页码:48-51
  • DOI:10.4230/LIPIcs.TQC.2014.48
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study zero-error entanglement assisted source-channel coding (communication in the presence of side information). Adapting a technique of Beigi, we show that such coding requires existence of a set of vectors satisfying orthogonality conditions related to suitably defined graphs G and H. Such vectors exist if and only if theta(G) <= theta(H) where theta represents the Lovász number. We also obtain similar inequalities for the related Schrijver theta^- and Szegedy theta^+ numbers. These inequalities reproduce several known bounds and also lead to new results. We provide a lower bound on the entanglement assisted cost rate. We show that the entanglement assisted independence number is bounded by the Schrijver number: alpha^*(G) <= theta^-(G). Therefore, we are able to disprove the conjecture that the one-shot entanglement-assisted zero-error capacity is equal to the integer part of the Lovász number. Beigi introduced a quantity beta as an upper bound on alpha^* and posed the question of whether beta(G) = \lfloor theta(G) \rfloor. We answer this in the affirmative and show that a related quantity is equal to \lceil theta(G) \rceil. We show that a quantity chi_{vect}(G) recently introduced in the context of Tsirelson's conjecture is equal to \lceil theta^+(G) \rceil.
  • 关键词:source-channel coding; zero-error capacity; Lov{\'a
国家哲学社会科学文献中心版权所有