首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Hardness of Submodular Cost Allocation: Lattice Matching and a Simplex Coloring Conjecture
  • 本地全文:下载
  • 作者:Alina Ene ; Jan Vondr{\'a}k
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2014
  • 卷号:28
  • 页码:144-159
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2014.144
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the Minimum Submodular Cost Allocation (MSCA) problem. In this problem, we are given k submodular cost functions f_1, ... , f_k: 2^V -> R_+ and the goal is to partition V into k sets A_1, ..., A_k so as to minimize the total cost sum_{i = 1}^k f_i(A_i). We show that MSCA is inapproximable within any multiplicative factor even in very restricted settings; prior to our work, only Set Cover hardness was known. In light of this negative result, we turn our attention to special cases of the problem. We consider the setting in which each function f_i satisfies f_i = g_i + h, where each g_i is monotone submodular and h is (possibly non-monotone) submodular. We give an O(k log |V|) approximation for this problem. We provide some evidence that a factor of k may be necessary, even in the special case of HyperLabel. In particular, we formulate a simplex-coloring conjecture that implies a Unique-Games-hardness of (k - 1 - epsilon) for k-uniform HyperLabel and label set [k]. We provide a proof of the simplex-coloring conjecture for k=3.
  • 关键词:Minimum Cost Submodular Allocation; Submodular Optimization; Hypergraph Labeling
国家哲学社会科学文献中心版权所有