首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Pseudorandomness and Fourier Growth Bounds for Width-3 Branching Programs
  • 本地全文:下载
  • 作者:Thomas Steinke ; Salil Vadhan ; Andrew Wan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2014
  • 卷号:28
  • 页码:885-899
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2014.885
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present an explicit pseudorandom generator for oblivious, read-once, width-3 branching programs, which can read their input bits in any order. The generator has seed length O~( log^3 n ). The previously best known seed length for this model is n^{1/2+o(1)} due to Impagliazzo, Meka, and Zuckerman (FOCS'12). Our work generalizes a recent result of Reingold, Steinke, and Vadhan (RANDOM'13) for permutation branching programs. The main technical novelty underlying our generator is a new bound on the Fourier growth of width-3, oblivious, read-once branching programs. Specifically, we show that for any f : {0,1}^n -> {0,1} computed by such a branching program, and k in [n], sum_{|s|=k} |hat{f}(s)| is the standard Fourier transform over Z_2^n. The base O(log n) of the Fourier growth is tight up to a factor of log log n.
  • 关键词:Pseudorandomness; Branching Programs; Discrete Fourier Analysis
国家哲学社会科学文献中心版权所有