首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Guruswami-Sinop Rounding without Higher Level Lasserre
  • 本地全文:下载
  • 作者:Amit Deshpande ; Rakesh Venkat
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2014
  • 卷号:28
  • 页码:105-114
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2014.105
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Guruswami and Sinop give a O(1/delta) approximation guarantee for the non-uniform Sparsest Cut problem by solving O(r)-level Lasserre semidefinite constraints, provided that the generalized eigenvalues of the Laplacians of the cost and demand graphs satisfy a certain spectral condition, namely, the (r+1)-th generalized eigenvalue is at least OPT/(1-delta). Their key idea is a rounding technique that first maps a vector-valued solution to [0,1] using appropriately scaled projections onto Lasserre vectors. In this paper, we show that similar projections and analysis can be obtained using only l_2^2 triangle inequality constraints. This results in a O(r/delta^2) approximation guarantee for the non-uniform Sparsest Cut problem by adding only l_2^2 triangle inequality constraints to the usual semidefinite program, provided that the same spectral condition, the (r+1)-th generalized eigenvalue is at least OPT/(1-delta), holds.
  • 关键词:Sparsest Cut; Lasserre Hierarchy; Metric embeddings
国家哲学社会科学文献中心版权所有