首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Provable Advantage for Quantum Strategies in Random Symmetric XOR Games
  • 本地全文:下载
  • 作者:Andris Ambainis ; Janis Iraids
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2013
  • 卷号:22
  • 页码:146-156
  • DOI:10.4230/LIPIcs.TQC.2013.146
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Non-local games are widely studied as a model to investigate the properties of quantum mechanics as opposed to classical mechanics. In this paper, we consider a subset of non-local games: symmetric XOR games of n players with 0-1 valued questions. For this class of games, each player receives an input bit and responds with an output bit without communicating to the other players. The winning condition only depends on XOR of output bits and is constant w.r.t. permutation of players. We prove that for almost any n-player symmetric XOR game the entangled value of the game is Theta((sqrt(ln(n)))/(n^{1/4})) adapting an old result by Salem and Zygmund on the asymptotics of random trigonometric polynomials. Consequently, we show that the classical-quantum gap is Theta(sqrt(ln(n))) for almost any symmetric XOR game.
  • 关键词:Random Symmetric XOR games; Entanglement
国家哲学社会科学文献中心版权所有