首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Theories for Subexponential-size Bounded-depth Frege Proofs
  • 本地全文:下载
  • 作者:Kaveh Ghasemloo ; Stephen A. Cook
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2013
  • 卷号:23
  • 页码:296-315
  • DOI:10.4230/LIPIcs.CSL.2013.296
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:This paper is a contribution to our understanding of the relationship between uniform and nonuniform proof complexity. The latter studies the lengths of proofs in various propositional proof systems such as Frege and bounded-depth Frege systems, and the former studies the strength of the corresponding logical theories such as VNC1 and V0 in [Cook/Nguyen, 2010]. A superpolynomial lower bound on the length of proofs in a propositional proof system for a family of tautologies expressing a result like the pigeonhole principle implies that the result is not provable in the theory associated with the propositional proof system. We define a new class of bounded arithmetic theories n^epsilon-ioV^\infinity for epsilon 0.
  • 关键词:Computational Complexity Theory; Proof Complexity; Bounded Arithmetic; NC1-Frege; AC0- Frege
国家哲学社会科学文献中心版权所有