首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Randomly-oriented k-d Trees Adapt to Intrinsic Dimension
  • 本地全文:下载
  • 作者:Santosh S. Vempala
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2012
  • 卷号:18
  • 页码:48-57
  • DOI:10.4230/LIPIcs.FSTTCS.2012.48
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The classic k-d tree data structure continues to be widely used in spite of its vulnerability to the so-called curse of dimensionality. Here we provide a rigorous explanation: for randomly rotated data, a k-d tree adapts to the intrinsic dimension of the data and is not affected by the ambient dimension, thus keeping the data structure efficient for objects such as low-dimensional manifolds and sparse data. The main insight of the analysis can be used as an algorithmic pre-processing step to realize the same benefit: rotate the data randomly; then build a k-d tree. Our work can be seen as a refinement of Random Projection trees [Dasgupta 2008], which also adapt to intrinsic dimension but incur higher traversal costs as the resulting cells are polyhedra and not cuboids. Using k-d trees after a random rotation results in cells that are cuboids, thus preserving the traversal efficiency of standard k-d trees.
  • 关键词:Data structures; Nearest Neighbors; Intrinsic Dimension; k-d Tree
国家哲学社会科学文献中心版权所有