摘要:We give asymptotically exact values for the treewidth tw(G) of a random geometric graph G(n,r) in [0,sqrt(n)]^2. More precisely, we show that there exists some c_1 > 0, such that for any constant 0 c_1, such that for any r=r(n)> c_2, tw(G)=Theta(r sqrt(n)). Our proofs show that for the corresponding values of r the same asymptotic bounds also hold for the pathwidth and treedepth of a random geometric graph.