首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Improved Spectral Sparsification and Numerical Algorithms for SDD Matrices
  • 本地全文:下载
  • 作者:Ioannis Koutis ; Alex Levin ; Richard Peng
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2012
  • 卷号:14
  • 页码:266-277
  • DOI:10.4230/LIPIcs.STACS.2012.266
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present three spectral sparsification algorithms that, on input a graph G with n vertices and m edges, return a graph H with n vertices and O(n log n/epsilon^2) edges that provides a strong approximation of G. Namely, for all vectors x and any epsilon>0, we have (1-epsilon) x^T L_G x n log^5 n and runs in tilde{O}(m log_{m/ n log^5 n} n time. In the range where m>n^{1+r} for some constant r this becomes softO(m). The improved sparsification algorithms are employed to accelerate linear system solvers and algorithms for computing fundamental eigenvectors of dense SDD matrices.
  • 关键词:Spectral sparsification; linear system solving
国家哲学社会科学文献中心版权所有