首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Unsatisfiable Linear CNF Formulas Are Large and Complex
  • 作者:Dominik Scheder
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2010
  • 卷号:5
  • 页码:621-632
  • DOI:10.4230/LIPIcs.STACS.2010.2490
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We call a CNF formula {\em linear} if any two clauses have at most one variable in common. We show that there exist unsatisfiable linear $k$-CNF formulas with at most $4k^24^k$ clauses, and on the other hand, any linear $k$-CNF formula with at most $\frac{4^k}{8e^2k^2}$ clauses is satisfiable. The upper bound uses probabilistic means, and we have no explicit construction coming even close to it. One reason for this is that unsatisfiable linear formulas exhibit a more complex structure than general (non-linear) formulas: First, any treelike resolution refutation of any unsatisfiable linear $k$-CNF formula has size at least $2^{2^{\frac{k}{2}-1}}$. This implies that small unsatisfiable linear $k$-CNF formulas are hard instances for Davis-Putnam style splitting algorithms. Second, if we require that the formula $F$ have a {\em strict} resolution tree, i.e. every clause of $F$ is used only once in the resolution tree, then we need at least $a^{a^{\iddots^a}}$ clauses, where $a \approx 2$ and the height of this tower is roughly $k$.
  • 关键词:Extremal combinatorics; proof complexity; probabilistic method
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有