首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:The Traveling Salesman Problem under Squared Euclidean Distances
  • 作者:Fred van Nijnatten ; Ren{\'e} Sitters ; Gerhard J. Woeginger
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2010
  • 卷号:5
  • 页码:239-250
  • DOI:10.4230/LIPIcs.STACS.2010.2458
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let $P$ be a set of points in $\Reals^d$, and let $\alpha \ge 1$ be a real number. We define the distance between two points $p,q\in P$ as $|pq|^{\alpha}$, where $|pq|$ denotes the standard Euclidean distance between $p$ and $q$. We denote the traveling salesman problem under this distance function by \tsp($d,\alpha$). We design a 5-approximation algorithm for \tsp(2,2) and generalize this result to obtain an approximation factor of $3^{\alpha-1}+\sqrt{6}^{\,\alpha}\!/3$ for $d=2$ and all $\alpha\ge2$. We also study the variant Rev-\tsp\ of the problem where the traveling salesman is allowed to revisit points. We present a polynomial-time approximation scheme for Rev-\tsp$(2,\alpha)$ with $\alpha\ge2$, and we show that Rev-\tsp$(d, \alpha)$ is \apx-hard if $d\ge3$ and $\alpha>1$. The \apx-hardness proof carries over to \tsp$(d, \alpha)$ for the same parameter ranges.
  • 关键词:Geometric traveling salesman problem; power-assignment in wireless networks; distance-power gradient; NP-hard; APX-hard
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有