首页    期刊浏览 2025年03月01日 星期六
登录注册

文章基本信息

  • 标题:Optimal Query Complexity for Reconstructing Hypergraphs
  • 作者:Nader H. Bshouty ; Hanna Mazzawi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2010
  • 卷号:5
  • 页码:143-154
  • DOI:10.4230/LIPIcs.STACS.2010.2496
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper we consider the problem of reconstructing a hidden weighted hypergraph of constant rank using additive queries. We prove the following: Let $G$ be a weighted hidden hypergraph of constant rank with~$n$ vertices and $m$ hyperedges. For any $m$ there exists a non-adaptive algorithm that finds the edges of the graph and their weights using $$ O\left(\frac{m\log n}{\log m}\right) $$ additive queries. This solves the open problem in [S. Choi, J. H. Kim. Optimal Query Complexity Bounds for Finding Graphs. {\em STOC}, 749--758, 2008]. When the weights of the hypergraph are integers that are less than $O(poly(n^d/m))$ where $d$ is the rank of the hypergraph (and therefore for unweighted hypergraphs) there exists a non-adaptive algorithm that finds the edges of the graph and their weights using $$ O\left(\frac{m\log \frac{n^d}{m}}{\log m}\right). $$ additive queries. Using the information theoretic bound the above query complexities are tight.
  • 关键词:Query complexity; hypergraphs
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有