首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Fragments of First-Order Logic over Infinite Words
  • 本地全文:下载
  • 作者:Volker Diekert ; Manfred Kufleitner
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2009
  • 卷号:3
  • 页码:325-336
  • DOI:10.4230/LIPIcs.STACS.2009.1818
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We give topological and algebraic characterizations as well as language theoretic descriptions of the following subclasses of first-order logic $\mathrm{FO}[<]$ for $\omega$-languages: $\Sigma_2$, $\Delta_2$, $\mathrm{FO}^2 \cap \Sigma_2$ (and by duality $\mathrm{FO}^2 \cap \Pi_2$), and $\mathrm{FO}^2$. These descriptions extend the respective results for finite words. In particular, we relate the above fragments to language classes of certain (unambiguous) polynomials. An immediate consequence is the decidability of the membership problem of these classes, but this was shown before by Wilke (1998) and Boja{\'n}czyk (2008) and is therefore not our main focus. The paper is about the interplay of algebraic, topological, and language theoretic properties.
  • 关键词:Infinite words; Regular languages; First-order logic; Automata theory; Semigroups; Topology
国家哲学社会科学文献中心版权所有