首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:An Approximation Algorithm for l_infinity Fitting Robinson Structures to Distances
  • 本地全文:下载
  • 作者:Victor Chepoi ; Morgan Seston
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2009
  • 卷号:3
  • 页码:265-276
  • DOI:10.4230/LIPIcs.STACS.2009.1816
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we present a factor 16 approximation algorithm for the following NP-hard distance fitting problem: given a finite set $X$ and a distance $d$ on $X$, find a Robinsonian distance $d_R$ on $X$ minimizing the $l_{\infty}$-error $||d-d_R||_{\infty}=\mbox{max}_{x,y\in X}\{ |d(x,y)-d_R(x,y)|\}.$ A distance $d_R$ on a finite set $X$ is Robinsonian if its matrix can be symmetrically permuted so that its elements do not decrease when moving away from the main diagonalalong any row or column. Robinsonian distances generalize ultrametrics, line distances and occur in the seriation problems and in classification.
  • 关键词:Robinsonian dissimilarity; Approximation algorithm; Fitting problem
国家哲学社会科学文献中心版权所有