首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Cardinality and counting quantifiers on omega-automatic structures
  • 本地全文:下载
  • 作者:Lukasz Kaiser ; Sasha Rubin ; Vince B{\'a}r{\'a}ny
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2008
  • 卷号:1
  • 页码:385-396
  • DOI:10.4230/LIPIcs.STACS.2008.1360
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We investigate structures that can be represented by omega-automata, so called omega-automatic structures, and prove that relations defined over such structures in first-order logic expanded by the first-order quantifiers `there exist at most $aleph_0$ many', 'there exist finitely many' and 'there exist $k$ modulo $m$ many' are omega-regular. The proof identifies certain algebraic properties of omega-semigroups. As a consequence an omega-regular equivalence relation of countable index has an omega-regular set of representatives. This implies Blumensath's conjecture that a countable structure with an $omega$-automatic presentation can be represented using automata on finite words. This also complements a very recent result of Hj"orth, Khoussainov, Montalban and Nies showing that there is an omega-automatic structure which has no injective presentation.
  • 关键词:$omega$-automatic presentations; $omega$-semigroups; $omega$-automata
国家哲学社会科学文献中心版权所有